Ir arriba
Información del artículo

Blood transfusion prediction using restricted Boltzmann machines

J. Cifuentes, Y. Yao, M. Yan, B. Zheng

Computer Methods in Biomechanics and Biomedical Engineering Vol. 23, nº. 9, pp. 510 - 517

Resumen:

The availability of blood transfusion has been a recurrent concern for medical institutions and patients. Efficient management of this resource represents an important challenge for many hospitals. Likewise, rapid reaction during transfusion decisions and planning is a critical factor to maximize patient care. This paper proposes a novel strategy for predicting the blood transfusion need, based on available information, by means of Restricted Boltzmann Machines (RBM). By extracting and analyzing high-level features from 4831 patient records, RBM can deal with complex patterns recognition, helping supervised classifiers in the task of automatic identification of blood transfusion requirements. Results show that a successfully classification is obtained (96.85%), based only on available information from the patient records.


Palabras Clave: Blood transfusion prediction; restricted Boltzmann machines; patterns recognition


Índice de impacto JCR y cuartil WoS: 1,763 - Q4 (2020); 1,700 - Q3 (2023)

Referencia DOI: DOI icon https://doi.org/10.1080/10255842.2020.1742709

Publicado en papel: Julio 2020.

Publicado on-line: Marzo 2020.



Cita:
J. Cifuentes, Y. Yao, M. Yan, B. Zheng, Blood transfusion prediction using restricted Boltzmann machines. Computer Methods in Biomechanics and Biomedical Engineering. Vol. 23, nº. 9, pp. 510 - 517, Julio 2020. [Online: Marzo 2020]


    Líneas de investigación:
  • Modelos matemáticos e Inteligencia Artificial aplicados al sector de la salud

pdf Previsualizar
pdf Solicitar el artículo completo a los autores